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The French fictional detective Arsène Lupin, arch rival of Sherlock Holmes, said:
“Il faut commencer à raisonner par le bon bout”.
S. M. Ulam, Adventure of a Mathematician
(University of California Press, Berkeley 1991).

Faithfully dedicated to Joe Paldus on the occasion of his 70th birthday.

The relationship between the Riccati and Schrödinger equations is discussed. It is shown
that the transformation converting the Riccati equation into its normal form is expressed in
terms of the roots of its algebraic part treated as a second-order polynomial. Together with
the well-known Riccati transformation, a new transformation which also links the Riccati
equation to the second-order linear differential equation is introduced. The latter is actually
the Riccati transformation applied to an “inverse” Riccati equation. Two specific forms of
the Riccati equation admitting the explicit particular rational solutions are obtained.
Keywords: Schrödinger equation; Riccati transformation; Differential equations; Quantum
chemistry.

The Riccati equation1,+ is a first-order nonlinear differential equation (for
more details, see e.g., refs.2–10)

′ = + + ≠y x a x y x b x y x c x ac( ) ( ) ( ) ( ) ( ) ( ) ,2 0 (1)
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+ D’Alembert apparently was the first who named this equation in 1763 as “Riccati’s
equation”.



where ′ ≡ d/dx. The Riccati differential equation is widely used in many
areas of quantum mechanics (see refs.11–13 for current works), e.g., in the
WKB approximation14,++, in supersymmetric quantum mechanics15, and
particularly in quantum chemistry (see refs.16–19 and references therein).

Let y0(x) be a particular solution of the Riccati equation (1). Defining
then a new function u(x) via

y x y x u x( ) ( ) ( )= +0 (2)

and substituting (2) into (1), one obtains the first-order differential equa-
tion for u(x)

′ = + +u x b x a x y x u x a x u x( ) [ ( ) ( ) ( )] ( ) ( ) ( ) .2 0
2 (3)

Equation (3) is the Bernoulli first-order differential equation4. Therefore, for
a given particular solution of the Riccati equation, the latter converts to the
Bernoulli equation which is solvable4.

To find the general solution of (3), let us define v = u–1. Equation (3) is
then transformed into the following first-order linear differential equation
for v

′ + + = −v b ay v a( ) .2 0 (4)

The general solution of (4) is straightforward, viz.

v x
A x x

v x a x A x x x
x

x
( )

( , )
[ ( ) ( ) ( , ) ]= −∫

1

0
0 1 1 0 1

0

d (5)

where A x x b x a x y x x
x

x
( , ) exp{ [ ( ) ( ) ( )] }0 1 1 0 1 12

0

= +∫ d . Therefore, the general solu-

tion of the Riccati equation can be represented in terms of a linear fraction
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++It seems that Young14a first derived the Riccati equation from the Schrödinger one (see Eq.
(7) in his work14a).



y x
CA x B x

CA x B x
( )

( ) ( )

( ) ( )
=

+
− +

1 1

2 2

(6)

where C y x A x A x x y x D x x B x y x A= = − = −( ), ( ) ( , ) ( ) ( , ), ( ) ( ) (0 1 0 0 0 1 0 1 x y x) ( ),0 0

A x D x x B x y x A x2 0 2 0 0 21( ) ( , ), ( ) ( ) ( )= = + , and D x x a x A x x x
x

x
( , ) ( ) ( , )0 1 1 0 1

0

= ∫ d .

NORMAL FORM OF RICCATI EQUATION

Return to the Riccati equation (1) and apply the transformation y(x) =
z(x)/a(x). One obtains the canonical form of the Riccati equation for z(x) 10

′ = + ′ +





+z z
a
a

b z ac2 (7)

where the function a(x) in (1) is converted to 1. Equation (7) can be rewrit-
ten as

′ = − −+ −z z z( )( )α α (8)

where α+ and α– are the roots of the following second-order algebraic poly-
nomial in z

z b
a
a

z ac2 0+ + ′





+ = . (9)

Introducing β1 = (α+ + α–)/2 and β2 = α+ – α– and substituting them into (8)
yields

′ = − −z z( )β β1
2

2
21

4
(10)

or

′ = + ′ −





u u 2
1 2

21
4

β β (11)

in terms of u(x) = z(x) – β1(x). The form (11), precisely
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′ = +u x u x C x( ) ( ) ( )2 (12)

is, by definition, the normal form of the Riccati differential equation (1)5–7

(see also refs.20,21). Using the expressions for the roots of Eq. (9), one can
explicitly represent C(x) as

C b
a
a

b
a
a

ac= − + ′





′ − + ′





+1
2

1
4

2

(13)

which naturally coincides with the well-known formula for C (refs.20,21)
(see also Eq. (2) in ref.22), though its representation (13) is more compact
and derived in a different way.

Consider Eq. (11) and substitute u = R sin α and C = R cos α therein. One
readily derives the equation for z = 2α

′ = − ′ +z
C
C

z Csin 2 (14)

which, on one hand, coincides with Eq. (I.79) of Kamke4 and on the other,
resembles the Prüfer equation θ′ = cos2 θ + C sin2 θ (see, e.g., ref.23).

RICCATI AND SCHRÖDINGER EQUATIONS

In 1760, Euler proved that the Riccati first-order nonlinear differential
equation (1) can be equivalently reduced to a second-order linear homoge-
neous differential equation (see, e.g., refs.2–4). The Schrödinger equation is
of the latter type, that is, in other words, there exists the correspondence
between Riccati and Schrödinger equations (see, e.g., ref.11 for a current
work and references therein). To demonstrate this correspondence, let us
define the following transformation

y x x
x
x

x( ) ( )
( )

( )= ′ +β ψ
ψ

α( )
(15)

and substitute it, together with the corresponding expression for y′(x), into
Eq. (1). As a result, one obtains
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′′ − ′





 + + ′ ′ − −







 + ′ −ψ

ψ
ψ
ψ

β ψ
ψ

β
β

α
β

α α
2

21 2
1

( ) (a a b a − − =b cα ) .0 (16)

There are a number of choices and alternatives to deal with Eq. (16):
(i) α = 0. Equation (16) then simplifies to

′′ − ′





 + + ′ ′ −







 − =ψ

ψ
ψ
ψ

β ψ
ψ

β
β β

2

1
1

0( ) .a b c (17)

To remove the term (ψ′/ψ)2 in (17), one has to put αβ + 1 = 0 that yields

a x x a x a x b x x a x c x x( ) ( ) [ ( ) ( ) ( )] ( ) ( ) ( ) ( ) .′′ − ′ + ′ + =ψ ψ ψ2 0 (18)

Equation (18) is a well-known second-order linear homogeneous differen-
tial equation6,7. The transformation y = –ψ′/aψ is called the Riccati transfor-
mation (see also the work by Liouville24). Note also that the Riccati trans-
formation u = –ψ′/ψ converts the normal Riccati equation (12) into

′′ψ ( ) + ( )ψ( ) =x C x x 0 ; (19)

(ii) α ≠ 0 and β = –1/a. α = –b/2a yields the second-order differential equa-
tion

′′ − ′ ′ + − − ′ + ′






 =ψ ψ ψa

a
ac

b a b
a

b
2

4 2
0 . (20)

This transformation y = –ψ′/(aψ) – b/(2a) has recently been introduced in
ref.12 Finally notice that α = –a′/(2a2) – b/(2a) gives rise to the second-order
linear differential equation

′′ + − − ′ + ′ − ′ + ′′





 =ψ ψac

b a b
a

b a
a

a
a

2 2

24 2 2
3
4 2

0
( )

(21)

which does not include the term with the first derivative ψ′.

Collect. Czech. Chem. Commun. (Vol. 70) (2005)

Riccati Equation 945



There exists another transformation that also links the Riccati equation
(1) to a second-order linear differential equation. Let us introduce a new
function φ(x) such that

y x x
x
x

x( ) ( )
( )
( )

( ) .=
′

+β φ
φ

α (22)

Substituting (22), with α(x) = 0, together with the corresponding expression
for y′(x), into Eq. (1), results in

φφ
φ

αβ φ
φ

φ
φ

β
β β

′′
′

+
′







 +

′
− ′






 + −







 =

( )2

2

1 0b
c

. (23)

If β(x) = c(x), one readily derives the following second-order linear differen-
tial equation

c x x c x c x b x x a x c x x( ) ( ) [ ( ) ( ) ( )] ( ) ( ) ( ) ( ) .′′ − ′ + ′ + =φ φ φ2 0 (24)

Therefore, there actually exist two different second-order linear homoge-
neous differential equations (18) and (24) linked, respectively, to the Riccati
equation by means of the Riccati transformation y = –ψ′/aψ and by a new
one, obtained from the ansatz, y = cφ/φ′. Obviously, Eq. (24) is more suit-
able compared to Eq. (18) at the nodes of ψ(x) although the latter usually
corresponds, as for instance in the supersymmetric approach, to the ground
eigenwavefunction either of Eq. (19) or (18). Nevertheless, both these trans-
formations are formally equivalent that can be readily demonstrated by ap-
plying the inverse transformation

y x
z x

( )
( )

= 1
(25)

to Eq. (1). This yields the equation

′ = − − −z x c x z x b x z x a x( ) ( ) ( ) ( ) ( ) ( )2 (26)

which is also of the Riccati type.

Collect. Czech. Chem. Commun. (Vol. 70) (2005)

946 Kryachko:



CLASSIFICATION OF THE RICCATI EQUATION: AN ATTEMPT

The well-known theorem in the theory of the Riccati differential equa-
tion8,9 (see also ref.25) states that if f(x), g(x), φ(x) and ψ(x) are arbitrary dif-
ferentiable functions

y x
C f x g x
C x x

( )
( ) ( )
( ) ( )

= +
+φ ψ

(27)

where C is a constant, obeys the Riccati equation. This particularly resem-
bles the aforementioned Eq. (6).

One may suggest that Eq. (27) chosen in a specific analytical form is a
particular solution y0(x) of the corresponding Riccati equation. Using fur-
ther the transformation y(x) = y0(x) + 1/u(x), proposed by Euler in 1760 (see,
e.g., refs.6,12) and which is analogous to that in introduction, one converts
a given Riccati equation to the explicitly solvable Bernoulli equation for
u(x) (ref.4) and, hence, obtains the general solution of a given Riccati equa-
tion. Furthermore, applying either the Riccati transformation y = –ψ′/aψ or
y = cφ/φ′ to the last Riccati equation, one transforms it to a particular sec-
ond-order linear differential equation and hence obtains its general solu-
tion as well. In order to demonstrate the above suggestion, let us consider
the following cases:

(i) f = g and φ = ψ. It merely leads to the Bernoulli differential equation

′ = ′ − ′ − ′
y y y

φψ φ ψ
ψ

ψ
ψ

2 ; (28)

(ii)

y x
C f
C

( ) .= +
+

1
φ ψ

(29)

Assuming that fψ – φ = 1, Eq. (29) results in the Riccati equation with the
following coefficients

c f b f a
bc b c b c

c
= − ′ = ′ = ′ − ′ +

, ,2
2

4

2

2
ψ (30)

whose particular solution casts explicitly as
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y x
C c x x

b x
c x

C
b x
c x

c x x

x

x
( )

( )

( )
=

−

− +



∫

∫

1

2
1

2

d

( )
( )

( )
( )

d


; (31)

(iii) Define the following two forms of Eq. (27):

y x
C x x
C x x1 ( )

sin ( ) cos ( )
cos ( ) sin ( )

= +
+

α α
α α

y x R x
C x x
C x x2 ( ) ( )

sin ( ) cos ( )
cos ( ) sin ( )

.= +
+

α α
α α

(32)

After some algebra, one obtains that both y1(x) and y2(x) satisfy Riccati-type
equations

′ = − ′ − ′
y y x1 1

2

2 2
α

α
α

αcos
( )

cos

′ = − ′ − ′ − ′
y

R
y x

R
R

y
R

2 1
2

12 2
α

α
α

αcos
( )

cos
. (33)

A comparison of the former one with Eq. (1) yields a(x) = c(x) = –α′(x)/cos 2α(x)
and b(x) = 0. For a given a(x) = c(x) in the Riccati equation (1) one easily de-
rives

α π π α( ) arctan tan ( ) exp ( )x x a x x
x

x
= − + +





−
 ∫4 4

40
0

d 










. (34)

The Riccati transformation converts the first Riccati equation in Eq. (33)
into the following second-order linear differential one

′′ − ′ ′ + =ψ ψ ψ( )
( )
( )

( ) ( ) ( ) .x
c x
c x

x c x x2 0 (35)

By analogy, the last equation in (33) determines a(x) = –α′ (x)/R(x) cos 2α(x),
c(x) = –R(x)α′ (x)/cos 2α(x), and b(x) = R′(x)/R(x). Therefore, one may explic-
itly determine α(x) and R(x) of y2(x) given by Eq. (32)

R x R x b x x
x

x
( ) ( )exp ( )= −



∫0

0

d
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α π π α( ) arctan tan ( ) exp ( ) ( )x x a x R x x
x

x
= − + +





−
4 4

40
0

d∫













. (36)

since c(x) = a(x)R2(x). This Riccati equation converts to a more complicated
second-order linear differential equation determined by the coefficients
a(x), b(x) and c(x).

CONCLUSIONS

To conclude, we have thus demonstrated the existence of another transfor-
mation that converts the Riccati equation into a second-order linear differ-
ential equation. This is actually the well-known Riccati transformation for
an “inverse” Riccati equation (26). Further, using the rational representa-
tion (27), satisfying the Riccati equation, we have found two particular so-
lutions of the associated Riccati equations that can be used to determine
general solutions of the corresponding second-order linear differential
equations, either derived via the Riccati or the inverse transformation.
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